#### Solving with an Integrating Factor
1. Put equation in form $\frac{dy}{dt}+P(t)=f(t)$
2. Find the Integrating Factor $\mu(t)=e^{\int P(t)dt}$
3. Multiply both sides of the equation by the Integrating Factor
- $\mu(t)\frac{dy}{dt}+P(t)\mu(t)y=\mu(t)f(t)$
4. By the product rule the left side is the derivative of $\mu(t)y$
- $\frac{dy}{dt}[\mu(t)y] =\mu(t)f(t)$
5. Integrate both sides
- $\int \frac{dy}{dt}[\mu(t)y]dt =\int \mu(t)f(t)dt$
- Integral and derivative on left side cancel
6. Rearrange as necessary to isolate $y(t)$
#### Examples with Integrating Factors
- All examples were scanned and typset into LaTex [[AI LaTex Typsetting|using Claude]]!
##### 1. $\frac{dy}{dt} - \frac{5}{t}y = t^5$
$
\begin{align} \frac{dy}{dt} - \frac{5}{t}y &= t^5
\\ P(t) &= \frac{-5}{t}
\\\qquad \qquad
\mu(t) &= e^{\int \frac{-5}{t}dt} = e^{-5\ln t} = t^{-5}
\\ \\ t^{-5}\frac{dy}{dt} - \frac{5}{t}t^{-5}y &= t^5 t^{-5}
\\[0.5cm] t^{-5}\frac{dy}{dt} - 5t^{-6}y &= 1
\\[0.5cm] \frac{d}{dt}\left[t^{-5}y\right] &= 1
\\[0.5cm] \int\frac{d}{dt}t^{-5}y\,dt &= \int 1\,dt
\\[0.5cm] t^{-5}y &= t + c
\\[0.5cm] y &= \frac{t}{t^{-5}} + \frac{c}{t^{-5}}
\\\\ y(t) &= t^6 + ct^5 \end{align}
$
---
##### 2. $\frac{dy}{dt} = -2ty + 4e^{-t^2}$
$
\begin{align}
\frac{dy}{dt} = -2ty + 4e^{-t^2}
\\ P(t) &= 2t
\\ \mu(t) &= e^{\int 2t\,dt} = e^{t^2}
\\\\ \frac{dy}{dt} + 2ty = 4e^{-t^2}
\\[0.5cm]
e^{t^2}\frac{dy}{dt} + 2te^{t^2}y &= 4e^{-t^2}e^{t^2}
\\[0.5cm]
\frac{d}{dt}\left[e^{t^2}y\right] &= 4
\\[0.5cm]
\int\frac{d}{dt}e^{t^2}y\,dt &= \int 4\,dt
\\[0.5cm]
e^{t^2}y &= 4t + C
\\[0.5cm]
y &= 4te^{-t^2} + Ce^{-t^2}
\\[0.5cm]
y(t) &= e^{-t^2}(4t + C)
\end{align}
$
---
##### 3. $\frac{dy}{dt} - \frac{2y}{t} = t^3e^t$
$
\begin{align}
\frac{dy}{dt} - \frac{2y}{t} &= t^3e^t \\[0.5cm]
P(t) &= -\frac{2}{t} \\
\mu(t) &= e^{\int -\frac{2}{t}dt} = e^{-2\ln t} = t^{-2} \\[0.5cm]
t^{-2}\frac{dy}{dt} - \frac{2}{t}t^{-2}y &= t^3e^t t^{-2} \\[0.5cm]
\frac{d}{dt}\left[t^{-2}y\right] &= te^t \\[0.5cm]
\int\frac{d}{dt}\left[t^{-2}y\right]dt &= \int te^tdt \\[0.5cm]
t^{-2}y &= \int te^t dt \qquad \text{Integrate by parts}
\\
\qquad u &= t \quad dv=e^t
\\
\qquad du &= q \quad v=e^t
\\&\int uv = uv - \int vdu
\\&= te^t - \int e^t dt
\\&= te^t - e^t + C
\\[0.5cm] t^{-2}y &= te^t - e^t + C
\\[0.5cm] y &= \frac{te^t}{t^{-2}} - \frac{e^t}{t^{-2}} + \frac{C}{t^{-2}} \\[0.5cm]
&= t^3e^t - t^2e^t + Ct^2 \\[0.5cm]
y(t) &= t^3e^t - t^2e^t + Ct^2
\end{align}
$